cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212545 Number of partitions of n containing at least one part m-5 if m is the largest part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 11, 19, 25, 39, 52, 75, 98, 137, 175, 236, 300, 393, 493, 635, 787, 997, 1227, 1531, 1869, 2309, 2796, 3420, 4119, 4994, 5979, 7201, 8574, 10260, 12164, 14470, 17082, 20225, 23778, 28025, 32838, 38542, 45011, 52642, 61286, 71434, 82937
Offset: 5

Views

Author

Alois P. Heinz, May 20 2012

Keywords

Examples

			a(7) = 1: [6,1].
a(8) = 1: [6,1,1].
a(9) = 3: [6,1,1,1], [6,2,1], [7,2].
a(10) = 4: [6,1,1,1,1], [6,2,1,1], [6,3,1], [7,2,1].
a(11) = 8: [6,1,1,1,1,1], [6,2,1,1,1], [6,2,2,1], [6,3,1,1], [6,4,1], [7,2,1,1], [7,2,2], [8,3].
		

Crossrefs

Column k=5 of A212551.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
        end:
    a:= n-> add(b(n-2*m-5, min(n-2*m-5, m+5)), m=1..(n-5)/2):
    seq(a(n), n=5..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
    a[n_] := Sum[b[n - 2 m - 5, Min[n - 2 m - 5, m + 5]], {m, 1, (n - 5)/2}];
    a /@ Range[5, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

Formula

G.f.: Sum_{i>0} x^(2*i+5) / Product_{j=1..5+i} (1-x^j).