A212548 Number of partitions of n containing at least one part m-8 if m is the largest part.
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 82, 110, 156, 205, 281, 366, 488, 627, 821, 1041, 1340, 1684, 2135, 2657, 3331, 4108, 5095, 6238, 7663, 9315, 11354, 13709, 16588, 19915, 23936, 28580, 34154, 40573, 48225, 57031, 67452, 79428, 93530, 109695, 128639
Offset: 8
Keywords
Examples
a(10) = 1: [9,1]. a(11) = 1: [9,1,1]. a(12) = 3: [9,1,1,1], [9,2,1], [10,2]. a(13) = 4: [9,1,1,1,1], [9,2,1,1], [9,3,1], [10,2,1]. a(14) = 8: [9,1,1,1,1,1], [9,2,1,1,1], [9,2,2,1], [9,3,1,1], [9,4,1], [10,2,1,1], [10,2,2], [11,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..1000
Crossrefs
Column k=8 of A212551.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i))) end: a:= n-> add(b(n-2*m-8, min(n-2*m-8, m+8)), m=1..(n-8)/2): seq(a(n), n=8..60);
-
Mathematica
Table[Count[IntegerPartitions[n],?(MemberQ[#,Max[#]-8]&)],{n,8,55}] (* _Harvey P. Dale, May 05 2016 *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]; a[n_] := Sum[b[n - 2 m - 8, Min[n - 2 m - 8, m + 8]], {m, 1, (n - 8)/2}]; a /@ Range[8, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>0} x^(2*i+8) / Product_{j=1..8+i} (1-x^j).