A212550 Number of partitions of n containing at least one part m-10 if m is the largest part.
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 159, 211, 291, 381, 512, 663, 873, 1117, 1448, 1833, 2342, 2938, 3708, 4611, 5760, 7105, 8792, 10769, 13215, 16077, 19585, 23679, 28651, 34447, 41424, 49541, 59248, 70509, 83892, 99390, 117695, 138846, 163708
Offset: 10
Keywords
Examples
a(12) = 1: [11,1]. a(13) = 1: [11,1,1]. a(14) = 3: [11,1,1,1], [11,2,1], [12,2]. a(15) = 4: [11,1,1,1,1], [11,2,1,1], [11,3,1], [12,2,1]. a(16) = 8: [11,1,1,1,1,1], [11,2,1,1,1], [11,2,2,1], [11,3,1,1], [11,4,1], [12,2,1,1], [12,2,2], [13,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Crossrefs
Column k=10 of A212551.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i))) end: a:= n-> add(b(n-2*m-10, min(n-2*m-10, m+10)), m=1..(n-10)/2): seq(a(n), n=10..60);
-
Mathematica
Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]-10]&)],{n,10,60}] (* _Harvey P. Dale, Feb 10 2015 *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]; a[n_] := Sum[b[n - 2m - 10, Min[n - 2m - 10, m + 10]], {m, 1, (n - 10)/2}]; a /@ Range[10, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>0} x^(2*i+10) / Product_{j=1..10+i} (1-x^j).