A212543
Number of partitions of n containing at least one part m-3 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 10, 17, 22, 33, 42, 60, 75, 103, 128, 169, 209, 271, 331, 421, 513, 642, 777, 963, 1158, 1421, 1703, 2070, 2471, 2985, 3546, 4257, 5043, 6019, 7105, 8443, 9933, 11752, 13790, 16247, 19012, 22326, 26052, 30492, 35500, 41420, 48108, 55980
Offset: 3
a(5) = 1: [4,1].
a(6) = 1: [4,1,1].
a(7) = 3: [4,1,1,1], [4,2,1], [5,2].
a(8) = 4: [4,1,1,1,1], [4,2,1,1], [4,3,1], [5,2,1].
a(9) = 8: [4,1,1,1,1,1], [4,2,1,1,1], [4,2,2,1], [4,3,1,1], [4,4,1], [5,2,1,1], [5,2,2], [6,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-3, min(n-2*m-3, m+3)), m=1..(n-3)/2):
seq(a(n), n=3..60);
-
Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]-3]&)],{n,3,60}] (* _Harvey P. Dale, Mar 01 2015 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 3, Min[n - 2 m - 3, m + 3]], {m, 1, (n - 3)/2}];
a /@ Range[3, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212544
Number of partitions of n containing at least one part m-4 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 18, 24, 37, 48, 69, 89, 122, 155, 207, 259, 337, 419, 534, 657, 827, 1008, 1252, 1518, 1864, 2246, 2736, 3276, 3960, 4722, 5668, 6727, 8032, 9492, 11274, 13279, 15696, 18424, 21694, 25380, 29772, 34736, 40604, 47244, 55060, 63897
Offset: 4
a(6) = 1: [5,1].
a(7) = 1: [5,1,1].
a(8) = 3: [5,1,1,1], [5,2,1], [6,2].
a(9) = 4: [5,1,1,1,1], [5,2,1,1], [5,3,1], [6,2,1].
a(10) = 8: [5,1,1,1,1,1], [5,2,1,1,1], [5,2,2,1], [5,3,1,1], [5,4,1], [6,2,1,1], [6,2,2], [7,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-4, min(n-2*m-4, m+4)), m=1..(n-4)/2):
seq(a(n), n=4..60);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 4, Min[n - 2 m - 4, m + 4]], {m, 1, (n - 4)/2}];
a /@ Range[4, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212545
Number of partitions of n containing at least one part m-5 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 25, 39, 52, 75, 98, 137, 175, 236, 300, 393, 493, 635, 787, 997, 1227, 1531, 1869, 2309, 2796, 3420, 4119, 4994, 5979, 7201, 8574, 10260, 12164, 14470, 17082, 20225, 23778, 28025, 32838, 38542, 45011, 52642, 61286, 71434, 82937
Offset: 5
a(7) = 1: [6,1].
a(8) = 1: [6,1,1].
a(9) = 3: [6,1,1,1], [6,2,1], [7,2].
a(10) = 4: [6,1,1,1,1], [6,2,1,1], [6,3,1], [7,2,1].
a(11) = 8: [6,1,1,1,1,1], [6,2,1,1,1], [6,2,2,1], [6,3,1,1], [6,4,1], [7,2,1,1], [7,2,2], [8,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-5, min(n-2*m-5, m+5)), m=1..(n-5)/2):
seq(a(n), n=5..60);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 5, Min[n - 2 m - 5, m + 5]], {m, 1, (n - 5)/2}];
a /@ Range[5, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212546
Number of partitions of n containing at least one part m-6 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 40, 54, 79, 104, 146, 190, 257, 330, 436, 552, 715, 896, 1140, 1415, 1777, 2184, 2711, 3308, 4063, 4922, 5995, 7214, 8720, 10435, 12525, 14910, 17793, 21076, 25016, 29507, 34850, 40941, 48148, 56351, 66007, 76995, 89855, 104484
Offset: 6
a(8) = 1: [7,1].
a(9) = 1: [7,1,1].
a(10) = 3: [7,1,1,1], [7,2,1], [8,2].
a(11) = 4: [7,1,1,1,1], [7,2,1,1], [7,3,1], [8,2,1].
a(12) = 8: [7,1,1,1,1,1], [7,2,1,1,1], [7,2,2,1], [7,3,1,1], [7,4,1], [8,2,1,1], [8,2,2], [9,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-6, min(n-2*m-6, m+6)), m=1..(n-6)/2):
seq(a(n), n=6..60);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 6, Min[n - 2 m - 6, m + 6]], {m, 1, (n - 6)/2}];
a /@ Range[6, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212547
Number of partitions of n containing at least one part m-7 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 55, 81, 108, 152, 199, 272, 351, 467, 596, 776, 979, 1255, 1566, 1978, 2448, 3054, 3747, 4628, 5635, 6896, 8342, 10125, 12172, 14673, 17537, 21005, 24981, 29748, 35210, 41718, 49161, 57974, 68049, 79902, 93440, 109295
Offset: 7
a(9) = 1: [8,1].
a(10) = 1: [8,1,1].
a(11) = 3: [8,1,1,1], [8,2,1], [9,2].
a(12) = 4: [8,1,1,1,1], [8,2,1,1], [8,3,1], [9,2,1].
a(13) = 8: [8,1,1,1,1,1], [8,2,1,1,1], [8,2,2,1], [8,3,1,1], [8,4,1], [9,2,1,1], [9,2,2], [10,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-7, min(n-2*m-7, m+7)), m=1..(n-7)/2):
seq(a(n), n=7..60);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 7, Min[n - 2 m - 7, m + 7]], {m, 1, (n - 7)/2}];
a /@ Range[7, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212548
Number of partitions of n containing at least one part m-8 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 82, 110, 156, 205, 281, 366, 488, 627, 821, 1041, 1340, 1684, 2135, 2657, 3331, 4108, 5095, 6238, 7663, 9315, 11354, 13709, 16588, 19915, 23936, 28580, 34154, 40573, 48225, 57031, 67452, 79428, 93530, 109695, 128639
Offset: 8
a(10) = 1: [9,1].
a(11) = 1: [9,1,1].
a(12) = 3: [9,1,1,1], [9,2,1], [10,2].
a(13) = 4: [9,1,1,1,1], [9,2,1,1], [9,3,1], [10,2,1].
a(14) = 8: [9,1,1,1,1,1], [9,2,1,1,1], [9,2,2,1], [9,3,1,1], [9,4,1], [10,2,1,1], [10,2,2], [11,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-8, min(n-2*m-8, m+8)), m=1..(n-8)/2):
seq(a(n), n=8..60);
-
Table[Count[IntegerPartitions[n],?(MemberQ[#,Max[#]-8]&)],{n,8,55}] (* _Harvey P. Dale, May 05 2016 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 8, Min[n - 2 m - 8, m + 8]], {m, 1, (n - 8)/2}];
a /@ Range[8, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
A212549
Number of partitions of n containing at least one part m-9 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 111, 158, 209, 287, 375, 503, 648, 852, 1086, 1403, 1770, 2255, 2817, 3546, 4393, 5469, 6723, 8294, 10120, 12382, 15011, 18228, 21965, 26497, 31749, 38069, 45383, 54114, 64204, 76176, 89975, 106259, 124998, 146987
Offset: 9
a(11) = 1: [10,1].
a(12) = 1: [10,1,1].
a(13) = 3: [10,1,1,1], [10,2,1], [11,2].
a(14) = 4: [10,1,1,1,1], [10,2,1,1], [10,3,1], [11,2,1].
a(15) = 8: [10,1,1,1,1,1], [10,2,1,1,1], [10,2,2,1], [10,3,1,1], [10,4,1], [11,2,1,1], [11,2,2], [12,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-9, min(n-2*m-9, m+9)), m=1..(n-9)/2):
seq(a(n), n=9..60);
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2 m - 9, Min[n - 2 m - 9, m + 9]], {m, 1, (n - 9)/2}];
a /@ Range[9, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]-9]&)],{n,9,60}] (* _Harvey P. Dale, Jun 08 2022 *)
A212550
Number of partitions of n containing at least one part m-10 if m is the largest part.
Original entry on oeis.org
0, 0, 1, 1, 3, 4, 8, 11, 19, 26, 41, 56, 83, 112, 159, 211, 291, 381, 512, 663, 873, 1117, 1448, 1833, 2342, 2938, 3708, 4611, 5760, 7105, 8792, 10769, 13215, 16077, 19585, 23679, 28651, 34447, 41424, 49541, 59248, 70509, 83892, 99390, 117695, 138846, 163708
Offset: 10
a(12) = 1: [11,1].
a(13) = 1: [11,1,1].
a(14) = 3: [11,1,1,1], [11,2,1], [12,2].
a(15) = 4: [11,1,1,1,1], [11,2,1,1], [11,3,1], [12,2,1].
a(16) = 8: [11,1,1,1,1,1], [11,2,1,1,1], [11,2,2,1], [11,3,1,1], [11,4,1], [12,2,1,1], [12,2,2], [13,3].
-
b:= proc(n, i) option remember;
`if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> add(b(n-2*m-10, min(n-2*m-10, m+10)), m=1..(n-10)/2):
seq(a(n), n=10..60);
-
Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]-10]&)],{n,10,60}] (* _Harvey P. Dale, Feb 10 2015 *)
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i - 1] + If[i > n, 0, b[n - i, i]]];
a[n_] := Sum[b[n - 2m - 10, Min[n - 2m - 10, m + 10]], {m, 1, (n - 10)/2}];
a /@ Range[10, 60] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
Showing 1-8 of 8 results.