A212563 Number of (w,x,y,z) with all terms in {1,...,n} and w+x<=2y+2z.
0, 1, 16, 78, 240, 577, 1182, 2172, 3680, 5865, 8900, 12986, 18336, 25193, 33810, 44472, 57472, 73137, 91800, 113830, 139600, 169521, 204006, 243508, 288480, 339417, 396812, 461202, 533120, 613145, 701850, 799856, 907776, 1026273, 1156000, 1297662, 1451952
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Crossrefs
Cf. A211795.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[w + x <= 2 y + 2 z, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]]; Map[t[#] &, Range[0, 40]] (* A212563 *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,16,78,240,577,1182},40] (* Harvey P. Dale, Aug 28 2020 *)
-
PARI
concat(0, Vec(x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2) + O(x^50))) \\ Colin Barker, Dec 10 2015
Formula
a(n) = 3*a(n-1)-a(n-2)-5*a(n-3)+5*a(n-4)+a(n-5)-3*a(n-6)+a(n-7).
From Colin Barker, Dec 10 2015: (Start)
a(n) = 1/96*(82*n^4+36*n^3-16*n^2-6*((-1)^n-1)*n+9*((-1)^n-1)).
G.f.: x*(1+13*x+31*x^2+27*x^3+10*x^4) / ((1-x)^5*(1+x)^2).
(End)
Comments