cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212578 Number of (w,x,y,z) with all terms in {1,...,n} and |w-x| = 2*|x-y| - |y-z|.

Original entry on oeis.org

0, 1, 4, 13, 28, 55, 92, 147, 216, 309, 420, 561, 724, 923, 1148, 1415, 1712, 2057, 2436, 2869, 3340, 3871, 4444, 5083, 5768, 6525, 7332, 8217, 9156, 10179, 11260, 12431, 13664, 14993, 16388, 17885, 19452, 21127, 22876, 24739, 26680, 28741
Offset: 0

Views

Author

Clark Kimberling, May 22 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 45); [0] cat Coefficients(R!( x*(1+2*x +4*x^2+2*x^3+x^4)/(1-2*x-x^2+4*x^3-x^4-2*x^5+x^6) )); // G. C. Greubel, Apr 10 2019
    
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2 Abs[w - x] == Abs[x - y] - Abs[y - z],
      s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 45]]   (* A212578 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 4, 13, 28, 55, 92}, 45] (* signature corrected by Georg Fischer, Apr 10 2019 *)
  • PARI
    my(x='x+O('x^45)); concat([0], Vec(x*(1+2*x+4*x^2+2*x^3+x^4)/(1 -2*x-x^2+4*x^3 -x^4-2*x^5+x^6))) \\ G. C. Greubel, Apr 10 2019
    
  • Sage
    (x*(1+2*x+4*x^2+2*x^3+x^4)/(1-2*x-x^2+4*x^3-x^4-2*x^5+x^6) ).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Apr 10 2019

Formula

a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
G.f.: x*(1 + 2*x + 4*x^2 + 2*x^3 + x^4)/(1 - 2*x - x^2 + 4*x^3 - x^4 - 2*x^5 + x^6).