A212624 Number of vertices in all independent vertex subsets of the rooted tree with Matula-Goebel number n.
1, 2, 5, 5, 10, 10, 13, 13, 20, 20, 20, 23, 23, 23, 38, 33, 23, 41, 33, 45, 45, 38, 41, 55, 71, 41, 74, 48, 45, 78, 38, 81, 71, 45, 82, 92, 55, 55, 78, 105, 41, 85, 48, 82, 137, 74, 78, 131, 98, 146, 82, 85, 81, 155, 130, 108, 105, 78, 45, 173, 92, 71, 153, 193, 141, 141, 55, 98, 137, 157, 105, 212
Offset: 1
Keywords
Examples
a(5)=10 because the rooted tree with Matula-Goebel number 5 is the path tree R - A - B - C with independent vertex subsets: {}, {R}, {A}, {B}, {C}, {R,B}, {R,C}, {A,C}. The total number of vertices is 10.
Links
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Programs
-
Maple
with(numtheory): A := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [x, 1] elif bigomega(n) = 1 then [expand(x*A(pi(n))[2]), expand(A(pi(n))[1])+A(pi(n))[2]] else [sort(expand(A(r(n))[1]*A(s(n))[1]/x)), sort(expand(A(r(n))[2]*A(s(n))[2]))] end if end proc: P := proc (n) options operator, arrow: sort(A(n)[1]+A(n)[2]) end proc: a := proc (n) options operator, arrow: subs(x = 1, diff(P(n), x)) end proc: seq(a(n), n = 1 .. 100);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; A[n_] := Which[n == 1, {x, 1}, PrimeOmega[n] == 1, {x*A[PrimePi[n]][[2]], A[PrimePi[n]][[1]] + A[PrimePi[n]][[2]]}, True, {A[r[n]][[1]]*A[s[n]][[1]]/x, A[r[n]][[2]]*A[s[n]][[2]]}]; P[n_] := A[n] // Total; a[n_] := D[P[n], x] /. x -> 1; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 20 2024, after Maple code *)
Formula
In A212623 one finds the generating polynomial P(n,x) with respect to the number of vertices of the independent vertex subsets of the rooted tree with Matula-Goebel number n. We have a(n) = subs(x=1, (d/dx)P(n,x)).
Comments