cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212649 a(n) = floor(Sum_{k=0..n-1} sqrt(n^2 - k^2)).

Original entry on oeis.org

1, 3, 8, 13, 21, 30, 41, 53, 67, 82, 99, 118, 138, 159, 183, 207, 234, 262, 291, 322, 355, 389, 425, 462, 501, 542, 584, 628, 673, 720, 768, 818, 870, 923, 977, 1034, 1091, 1151, 1212, 1274, 1338, 1404, 1471, 1540, 1610, 1682, 1756, 1831, 1908, 1986, 2066
Offset: 1

Views

Author

Philippe Deléham, Mar 07 2013

Keywords

Comments

Limit_{n->oo} a(n)/n^2 = Pi/4 = 0.78539816...

Examples

			A094728(4) is (16, 15, 12, 7). Hence, a(4) = floor(sqrt(16) + sqrt(15) + sqrt(12) + sqrt(7)) = floor(13.9828...) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[Sqrt[n^2 - k^2], {k, 0, n - 1}]], {n, 60}] (* T. D. Noe, Mar 19 2013 *)

Formula

a(n) = floor(Sum_{k=0..n-1} sqrt(A094728(n,k))).

Extensions

a(16)-a(50) from Giovanni Resta, Mar 19 2013