A212662 Numbers k for which k' = x' + y', where x > 0, k = x + y, and k', x', y' are the arithmetic derivatives of k, x, y.
3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 36, 39, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 82, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 116, 117, 120, 121, 123, 125, 126, 129, 132, 135, 138, 141, 144, 145
Offset: 1
Keywords
Examples
k=24, x=8, y=16 and 24=8+16; k'=44, x'=12, y'=32 and 44=12+32. In more than one way: k=39, x=4, y=35 and 39=4+35; k'=16, x'=4, y'=12 and 16=4+12; k=39, x=13, y=26 and 39=13+26; k'=16, x’=1, y'=15 and 16=1+15. k=255, x=54, y=201 and 255=54+201; k'=151, x'=81, y'=70 and 16=4+12; k=255, x=85, y=170 and 255=85+170; k'=151, x'=22, y'=129 and 16=1+15; k=255, x=114, y=141 and 39=13+26; k'=151, x'=101, y'=50 and 16=1+15.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..5000
Programs
-
Maple
with(numtheory); A212662:=proc(q) local a,b,c,i,n,p,pfs; for n from 1 to q do pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs); for i from 1 to trunc(n/2) do pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs); pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs); if a=b+c then print(n); break; fi; od; od; end: A212662(1000);
-
PARI
ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415 isok(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ Michel Marcus, Aug 27 2022