cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212662 Numbers k for which k' = x' + y', where x > 0, k = x + y, and k', x', y' are the arithmetic derivatives of k, x, y.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 33, 36, 39, 42, 45, 48, 50, 51, 54, 55, 57, 60, 63, 66, 69, 72, 75, 78, 81, 82, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 116, 117, 120, 121, 123, 125, 126, 129, 132, 135, 138, 141, 144, 145
Offset: 1

Views

Author

Paolo P. Lava, May 23 2012

Keywords

Examples

			k=24, x=8, y=16 and 24=8+16; k'=44, x'=12, y'=32 and 44=12+32.
In more than one way:
k=39, x=4, y=35 and 39=4+35; k'=16, x'=4, y'=12 and 16=4+12;
k=39, x=13, y=26 and 39=13+26; k'=16, x’=1, y'=15 and 16=1+15.
k=255, x=54, y=201 and 255=54+201; k'=151, x'=81, y'=70 and 16=4+12;
k=255, x=85, y=170 and 255=85+170; k'=151, x'=22, y'=129 and 16=1+15;
k=255, x=114, y=141 and 39=13+26; k'=151, x'=101, y'=50 and 16=1+15.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A212662:=proc(q)
    local a,b,c,i,n,p,pfs;
    for n from 1 to q do
      pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs);
      for i from 1 to trunc(n/2) do
        pfs:=ifactors(i)[2]; b:=i*add(op(2,p)/op(1,p),p=pfs);
        pfs:=ifactors(n-i)[2]; c:=(n-i)*add(op(2,p)/op(1,p),p=pfs);
        if a=b+c then print(n); break; fi;
      od;
    od; end:
    A212662(1000);
  • PARI
    ard(n)=vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(m) = for (k=1, m\2, if (ard(m-k)+ard(k) == ard(m), return(1))); \\ Michel Marcus, Aug 27 2022