A291046 Minimal multiplicative semigroup of numbers n > 1 such that in the prime factorization of n an initial product of primes is greater than a later prime in the factorization.
30, 60, 70, 90, 105, 120, 140, 150, 154, 165, 180, 182, 195, 210, 231, 240, 270, 273, 280, 286, 300, 308, 315, 330, 350, 357, 360, 364, 374, 385, 390, 399, 418, 420, 429, 442, 450, 455, 462, 480, 490, 494, 495, 510, 525, 540, 546, 560, 561, 570, 572, 585, 595, 598, 600, 616, 627
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local S,p,i; S:= sort(convert(numtheory:-factorset(n),list)); p:= 1; for i from 1 to nops(S)-1 do p:= p*S[i]; if p > S[i+1] then return true fi; od; false end proc: select(filter, [$1..1000]); # Robert Israel, Aug 26 2018
Comments