A212667 Numbers n such that the sum of digits of n equals the concatenation of the distinct prime divisors of n.
2, 3, 5, 7, 2401, 4913, 655360, 3906250, 6553600, 39062500, 41943040, 65536000, 390625000, 419430400, 655360000, 3906250000, 4194304000, 6553600000, 27512614111, 39062500000, 41943040000, 65536000000, 271818611107, 390625000000, 419430400000
Offset: 1
Examples
655360 is in the sequence because 655360 = 2^17 * 5 => the concatenation of the prime divisors is the number 25 and 6+5+5+3+6+0 = 25.
Crossrefs
Cf. A046017.
Programs
-
Maple
with(numtheory):for n from 1 to 10^8 do: V:=convert(n, base, 10): n1:=nops(V): s1:=sum(‘V[m]’, ‘m’=1..n1):x:=factorset(n):n1:=nops(x): s:=0:s0:=0:for i from n1 by -1 to 1 do: a:=x[i]:b:=length(a):s:=s+a*10^s0:s0:=s0+b:od: if s=s1 then print(n):else fi:od:
Comments