cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212694 Number of 2-colored Dyck n-paths with up steps (U, u), down steps (D, d), and avoiding UU and DD.

Original entry on oeis.org

1, 4, 25, 197, 1745, 16580, 165115, 1700809, 17971466, 193710087, 2121585340, 23543198588, 264138223362, 2991130956918, 34143543312267, 392458689992396, 4538574332686469, 52768896995910303, 616471818881678085, 7232838546289017796, 85188401983572928395
Offset: 0

Views

Author

Alois P. Heinz, May 23 2012

Keywords

Comments

Upper case letters denote one color and lower case letters the other.

Examples

			a(1) = 4: ud, Ud, uD, UD.
a(2) = 25: uudd, Uudd, uUdd, uuDd, UuDd, uUDd, udud, Udud, uDud, UDud, udUd, UdUd, uDUd, UDUd, uudD, UudD, uUdD, uduD, UduD, uDuD, UDuD, udUD, UdUD, uDUD, UDUD.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1,
          `if`(y<1  , 0, b(x-1, y-1, 0)+`if`(t=1, 0, b(x-1, y-1, 1)))+
          `if`(x b(2*n, 0$2):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, If[y < 1, 0, b[x - 1, y - 1, 0] + If[t == 1, 0, b[x - 1, y - 1, 1]]] + If[x < y + 2, 0, b[x - 1, y + 1, 0] + If[t == 2, 0, b[x - 1, y + 1, 2]]]];
    a[n_] := b[2n, 0, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Formula

Recurrence: 5*n*(n+1)*(n+2)*(11856*n^6 - 462048*n^5 + 6376819*n^4 - 42412433*n^3 + 147659510*n^2 - 260432089*n + 184927095)*a(n) = n*(n+1)*(1683552*n^7 - 66428880*n^6 + 937628962*n^5 - 6466755025*n^4 + 23922419618*n^3 - 47274340850*n^2 + 44490285903*n - 13108829940)*a(n-1) - n*(14310192*n^8 - 585624672*n^7 + 8802419365*n^6 - 66744441981*n^5 + 284660409448*n^4 - 703230360993*n^3 + 976943147665*n^2 - 682900257024*n + 175305383460)*a(n-2) + 2*(17238624*n^9 - 746332752*n^8 + 12295273466*n^7 - 105941663163*n^6 + 537013083761*n^5 - 1677467513328*n^4 + 3243096592679*n^3 - 3743377415442*n^2 + 2332897216785*n - 592736810400)*a(n-3) - (37974768*n^9 - 1728832752*n^8 + 30714335273*n^7 - 291055104422*n^6 + 1652510618897*n^5 - 5890634883203*n^4 + 13267453974662*n^3 - 18291224811263*n^2 + 14073816074160*n - 4638445144200)*a(n-4) + (23308896*n^9 - 1108835760*n^8 + 20950004098*n^7 - 213362099351*n^6 + 1311302140489*n^5 - 5085585201440*n^4 + 12508042515937*n^3 - 18889708965719*n^2 + 15984167161110*n - 5834960787600)*a(n-5) - (8927568*n^9 - 442319616*n^8 + 8817227331*n^7 - 95321285525*n^6 + 623567997102*n^5 - 2575734547859*n^4 + 6742249614729*n^3 - 10822975984520*n^2 + 9730758446550*n - 3782772932400)*a(n-6) + 4*(2*n - 13)*(248976*n^8 - 11244288*n^7 + 197289135*n^6 - 1812121625*n^5 + 9661474889*n^4 - 30841990357*n^3 + 57959845045*n^2 - 59304520365*n + 25796647800)*a(n-7) - 4*(n-7)*(2*n - 15)*(2*n - 13)*(11856*n^6 - 390912*n^5 + 4244419*n^4 - 21288517*n^3 + 54240485*n^2 - 69082196*n + 35668710)*a(n-8). - Vaclav Kotesovec, Jul 16 2014
Limit n->infinity a(n)^(1/n) = (13+3*sqrt(17))/2 = 12.68465843842649... . - Vaclav Kotesovec, Jul 16 2014