A212702 Main transitions in systems of n particles with spin 7/2.
7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
-
PARI
mtrans(n, b) = n*(b-1)*b^(n-1); for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
-
PARI
Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
Formula
a(n) = n*(b-1)*b^(n-1). For this sequence, set b=8.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 16*a(n-1) - 64*a(n-2) for n > 2.
G.f.: 7*x/(8*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 7*x*exp(8*x).
Comments