cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212742 Number of (w,x,y,z) with all terms in {0,...,n} and max{w,x,y,z}<=2*min{w,x,y,z}.

Original entry on oeis.org

1, 2, 17, 32, 97, 162, 337, 512, 881, 1250, 1921, 2592, 3697, 4802, 6497, 8192, 10657, 13122, 16561, 20000, 24641, 29282, 35377, 41472, 49297, 57122, 66977, 76832, 89041, 101250, 116161, 131072, 149057, 167042, 188497, 209952, 235297
Offset: 0

Views

Author

Clark Kimberling, May 26 2012

Keywords

Comments

Also, the number of (w,x,y,z) with all terms in {0,...,n} and the differences w-x, x-y, y-z all even.
a(n)+A212743(n) = n^4.
For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Max[w, x, y, z] <= 2 Min[w, x, y, z], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212742 *)
    LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{1,2,17,32,97,162,337,512},40] (* Harvey P. Dale, May 14 2013 *)

Formula

a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8).
G.f.: -(1+x^2)*(x^4+10*x^2+1) / ( (1+x)^3*(x-1)^5 ).
a(n) = A212740(n+1) for n>=0.