cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212746 Number of (w,x,y,z) with all terms in {0,...,n} and at least one of them is the range of {w,x,y,z}.

Original entry on oeis.org

1, 15, 79, 225, 529, 975, 1711, 2625, 3985, 5535, 7711, 10065, 13249, 16575, 20959, 25425, 31201, 36975, 44335, 51585, 60721, 69615, 80719, 91425, 104689, 117375, 132991, 147825, 165985, 183135, 204031, 223665, 247489, 269775, 296719, 321825, 352081, 380175
Offset: 0

Views

Author

Clark Kimberling, May 27 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Examples

			For n=1, there are sixteen 4-tuples, (w,x,y,z); All but two include both 0 and 1 and have range 1.  The two others, (0,0,0,0) and (1,1,1,1,), have range 0.  Therefore, a(1)=15.
		

Crossrefs

Programs

  • Mathematica
    Remove["Global`*"];
    t = Compile[{{n, _Integer}},
    Module[{s = 0}, (Do[
    If[(w == # || x == # || y == # || z == #) &[
    Max[w, x, y, z] - Min[w, x, y, z]], s++], {w, 0, n},
    {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 40]] (* A212746 *)
    (* Peter J. C. Moses, May 24 2012 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,15,79,225,529,975,1711},40] (* Harvey P. Dale, Oct 24 2018 *)
  • PARI
    Vec((1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 29 2016

Formula

a(n) = n^4 - A212569(n).
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-5)+3*a(n-6)+a(n-7)-a(n-8).
G.f.: (1+14*x+61*x^2+104*x^3+115*x^4+50*x^5+15*x^6) / ((1+x)^3*(x-1)^4).
From Colin Barker, Jan 29 2016: (Start)
a(n) = (3*n*(10*n^2+n+(-1)^n*(n-1)+9)+2*((-1)^n+1))/4.
a(n) = (15*n^3+3*n^2+12*n+2)/2 for n even.
a(n) = (15*n^3+15*n)/2 for n odd.
(End)