cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212767 Number of (w,x,y,z) with all terms in {0,...,n}, w even, x even, and w+x=y+z.

Original entry on oeis.org

1, 1, 8, 10, 29, 35, 72, 84, 145, 165, 256, 286, 413, 455, 624, 680, 897, 969, 1240, 1330, 1661, 1771, 2168, 2300, 2769, 2925, 3472, 3654, 4285, 4495, 5216, 5456, 6273, 6545, 7464, 7770, 8797, 9139, 10280, 10660, 11921, 12341, 13728, 14190
Offset: 0

Views

Author

Clark Kimberling, May 29 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[(Mod[w, 2] == 0) && (Mod[x, 2] == 0 && w + x == y + z), s++], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A212767 *)
    LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 1, 8, 10, 29, 35, 72}, 50]

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: ( 1+4*x^2+2*x^3+x^4 ) / ( (1+x)^3*(1-x)^4 ).
a(n) = (4*n^3+15*n^2+20*n+12+3*(n^2+4*n+4)*(-1)^n)/24. - Luce ETIENNE, Jun 03 2014