A028977 Theta series of 8-d 6-modular lattice G_2 tensor F_4 (or A_2 tensor D_4) with det 1296 and minimal norm 4 in powers of q^2.
1, 0, 72, 192, 504, 576, 2280, 1728, 4248, 4800, 7920, 6336, 19416, 10368, 21312, 22464, 33624, 24192, 63048, 32832, 65808, 60864, 83232, 57600, 155640, 76032, 137520, 130944, 180288, 116928, 290736
Offset: 0
Keywords
Examples
G.f. = 1 + 72*x^2 + 192*x^3 + 504*x^4 + 576*x^5 + 2280*x^6 + 1728*x^7 + ... G.f. = 1 + 72*q^4 + 192*q^6 + 504*q^8 + 576*q^10 + 2280*q^12 + 1728*q^14 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
- G. Nebe and N. J. A. Sloane, Home page for this lattice
- E. M. Rains and N. J. A. Sloane, The Shadow Theory of Modular and Unimodular Lattices, J. Number Theory, 73 (1998), 359-389.
- Index entries for sequences related to D_4 lattice
Programs
-
Magma
A := Basis( ModularForms( Gamma0(6), 4), 32); A[1] + 72*A[3] + 192*A[4] + 504*A[5]; /* Michael Somos, Aug 20 2014 */
-
Mathematica
a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^6], e2 = QPochhammer[ x^2] QPochhammer[ x^3]}, (e2^7 / e1^5 - x e1^7 /e2^5)^2 - 8 x (e1 e2)^2], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
-
PARI
{a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( (B^7 / A^5 - x * A^7 / B^5)^2 - 8 * x * (A * B)^2, n))}; /* Michael Somos, May 27 2012 */
Formula
Expansion of ((eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5)^2 - 8 * (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12))^2 in powers of q. - Michael Somos, May 27 2012
G.f. A(x) = g1(x)^2 * (1 - 4*g2(x) - 16*g2(x)^3 + 16*g2(x)^4) where g1(x) = A033712(x) and g2(x) = A212770(x). - Michael Somos, Apr 19 2015
Comments