A212820 Balanced primes which are the average of two successive semiprimes.
5, 53, 173, 211, 1511, 3307, 3637, 4457, 4993, 6863, 11411, 11731, 11903, 12653, 15907, 18223, 20107, 20201, 20347, 20731, 22051, 23801, 26041, 35911, 39113, 40493, 46889, 47303, 51551, 52529, 60083, 63559, 69623, 71011, 75787, 77081, 78803, 85049, 91297
Offset: 1
Keywords
Examples
53 is in the sequence because it is the average of 47 and 59 (the two neighboring primes) and 51 and 55 (the two neighboring semiprimes).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): prevsp:= proc(n) local k; for k from n-1 by -1 while isprime(k) or bigomega(k)<>2 do od; k end: nextsp:= proc(n) local k; for k from n+1 while isprime(k) or bigomega(k)<>2 do od; k end: a:= proc(n) option remember; local p; p:= `if`(n=1, 2, a(n-1)); do p:= nextprime(p); if p=(prevprime(p)+nextprime(p))/2 and p=(prevsp(p)+nextsp(p))/2 then break fi od; p end: seq (a(n), n=1..40); # Alois P. Heinz, Jun 03 2012
-
Mathematica
prevsp[n_] := Module[{k}, For[k = n-1, PrimeQ[k] || PrimeOmega[k] != 2, k--]; k]; nextsp[n_] := Module[{k}, For[k = n+1, PrimeQ[k] || PrimeOmega[k] != 2 , k++]; k]; a[n_] := a[n] = Module[{p}, p = If[n==1, 2, a[n-1]]; While[True, p = NextPrime[p]; If[p == (NextPrime[p, -1] + NextPrime[p])/2 && p == (prevsp[p] + nextsp[p])/2, Break[]]]; p]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 24 2017, after Alois P. Heinz *)
Comments