cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212865 Number of nondecreasing sequences of n 1..5 integers with no element dividing the sequence sum.

Original entry on oeis.org

0, 5, 9, 15, 22, 32, 40, 59, 74, 97, 124, 159, 188, 229, 260, 301, 347, 415, 477, 559, 630, 715, 801, 897, 987, 1106, 1214, 1342, 1471, 1623, 1760, 1934, 2099, 2287, 2475, 2683, 2878, 3116, 3334, 3581, 3832, 4115, 4377, 4681, 4968, 5283, 5605, 5965, 6310, 6707
Offset: 1

Views

Author

R. H. Hardin, May 29 2012

Keywords

Comments

Column 5 of A212868.

Examples

			Some solutions for n=8:
..2....3....2....2....3....2....2....2....3....2....4....2....3....4....2....2
..2....3....2....3....3....4....5....3....3....2....4....2....3....5....3....2
..2....3....2....3....3....4....5....4....4....3....4....3....3....5....3....2
..2....3....3....3....3....4....5....4....4....3....4....3....3....5....3....4
..2....3....5....3....3....4....5....4....5....4....4....3....3....5....4....4
..3....4....5....3....3....4....5....4....5....5....4....4....3....5....4....5
..3....5....5....3....3....4....5....5....5....5....4....4....4....5....5....5
..3....5....5....3....4....5....5....5....5....5....5....4....4....5....5....5
		

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +a(n-5) +2*a(n-6) -2*a(n-7) -2*a(n-8) +2*a(n-9) +a(n-10) -a(n-12) -2*a(n-13) +2*a(n-14) +2*a(n-15) -2*a(n-16) -a(n-17) +2*a(n-19) +a(n-20) -4*a(n-21) +a(n-22) +2*a(n-23) -a(n-25) -2*a(n-26) +2*a(n-27) +2*a(n-28) -2*a(n-29) -a(n-30) +a(n-32) +2*a(n-33) -2*a(n-34) -2*a(n-35) +2*a(n-36) +a(n-37) -2*a(n-39) +2*a(n-41) -a(n-42).
If the above empirical recurrence by R. H. Hardin is correct, then the denominator of the g.f. (that determines the above recurrence) equals (1-x)^2*(1-x^2)*(1-x^12)*(1-x^15)*(1-x^20)/((1-x^4)*(1-x^5)). - Petros Hadjicostas, Sep 09 2019