A212876 Numbers of the form n^2+1 such that 3^(m+3)==9 (mod m) where m=n^4-1.
5, 17, 37, 101, 257, 1297, 4357, 14401, 44101, 65537, 828101, 933157, 8122501, 8386817, 12362257, 41990401, 121220101, 157402117, 223502501, 318622501, 378146917, 506700101, 684345601, 702038017
Offset: 1
Keywords
Examples
Let n = 10. Then m = n^4-1 = 9999. 3^10002 == 9 (mod 9999), so n^2+1 = 101 is a member of the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..3556
Programs
-
PARI
v=List();for(n=2,1e6,m=n^4-1;if(Mod(3,m)^(m+3)==9, listput(v, n^2+1))); Vec(v) \\ Charles R Greathouse IV, May 29 2012
Comments