cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212877 Decimal expansion of the real part of i!, where i = sqrt(-1).

Original entry on oeis.org

4, 9, 8, 0, 1, 5, 6, 6, 8, 1, 1, 8, 3, 5, 6, 0, 4, 2, 7, 1, 3, 6, 9, 1, 1, 1, 7, 4, 6, 2, 1, 9, 8, 0, 9, 1, 9, 5, 2, 9, 6, 2, 9, 6, 7, 5, 8, 7, 6, 5, 0, 0, 9, 2, 8, 9, 2, 6, 4, 2, 9, 5, 4, 9, 9, 8, 4, 5, 8, 3, 0, 0, 4, 3, 5, 9, 8, 1, 9, 3, 4, 5, 0, 7, 8, 9, 4, 5, 0, 4, 2, 8, 2, 6, 7, 0, 5, 8, 1, 4, 0, 5, 6, 0, 6
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

Also the negated imaginary part of Gamma(i).

Examples

			0.498015668118356042713691117462198...
		

Crossrefs

Cf. A212878 (-imag(i!)), A212879 (abs(i!)), A212880 (-arg(i!)), A090986.

Programs

  • Mathematica
    RealDigits[Re[Gamma[I + 1]], 10, 105] (* T. D. Noe, May 29 2012 *)
  • PARI
    real(I*gamma(I))

Formula

i! = gamma(1+i) = i*gamma(i).
Equals (1/2)*Integral_{x=-1/e..0} LambertW(x)*sin(log(-LambertW(x)))-LambertW(-1,x)*sin(log(-LambertW(-1,x))) dx. - Gleb Koloskov, Oct 01 2021
Equals Integral_{x=0..+oo} exp(-x)*cos(log(x)) dx. - Jianing Song, Sep 27 2023
A212877^2 + A212878^2 = A090986 = Pi/sinh(Pi). - Vaclav Kotesovec, Dec 28 2023