A212887 a(n) is the prime p corresponding to the smallest integer k such that k^2 == p (mod prime(n)).
2, 5, 3, 2, 17, 2, 7, 5, 7, 23, 41, 2, 11, 5, 3, 59, 29, 71, 2, 17, 11, 3, 43, 41, 37, 7, 31, 17, 13, 7, 5, 47, 59, 47, 151, 2, 23, 17, 79, 5, 3, 59, 2, 113, 2, 29, 71, 23, 17, 83, 5, 67, 61, 131, 53, 47, 43, 41, 31, 17, 13, 11, 7, 67, 239, 53, 227, 47, 2, 107
Offset: 4
Keywords
Examples
a(8) = 17 because 17 == 6^2 mod 19 where 19 = prime(8) and 6 is the smallest k. Remark : 11 == 7^2 mod 19, but 7 > 6.
Links
- Michel Lagneau, Table of n, a(n) for n = 4..10000
Programs
-
Maple
for n from 2 to 100 do:p:=ithprime(n):i:=0:for k from 0 to p-1 while(i=0) do: q:=irem(k^2,p):if type(q,prime)=true then i:=1:printf(`%d, `,q):else fi:od:od:
Comments