A212892 a(n) = n^4/8 if n is even, a(n) = (n^2-1)^2/8 if n is odd.
0, 0, 2, 8, 32, 72, 162, 288, 512, 800, 1250, 1800, 2592, 3528, 4802, 6272, 8192, 10368, 13122, 16200, 20000, 24200, 29282, 34848, 41472, 48672, 57122, 66248, 76832, 88200, 101250, 115200, 131072, 147968, 167042, 187272, 209952, 233928, 260642, 288800, 320000, 352800, 388962, 426888
Offset: 0
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- K. Drakakis, A review of Costas arrays, Journal of Applied Mathematics, pp. 1-32, 2006, Article ID 26385.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Maple
f:=n->if n mod 2 = 0 then n^4/8 else (n^2-1)^2/8; fi; [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 06 2015
-
Mathematica
(* If the sequence begins a(0)=0, a(1)=2, a(2)=8, a(3)=32, ... *) t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Mod[w - x, 2] == Mod[x - y, 2] == Mod[y - z, 2] == 1, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 40]] (* A212892 *) m/2 (* integers *)
Formula
If the sequence begins a(0)=0, a(1)=2, a(2)=8, a(3)=32, ...: a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8). G.f.: f(x)/g(x), where f(x) = x+2*x^2+6*x^3+2*x^4+x^5 and g(x) = ((1-x)^5)*(1+x)^3.
Sum_{n>=2} 1/a(n) = Pi^4/180 + Pi^2/6 - 3/2. - Amiram Eldar, Sep 08 2022
a(n) = 2*floor(n^2/4)^2 = 2*A030179(n). - Ridouane Oudra, Sep 12 2023
Extensions
Formed by merging two entries that arose in different contexts. Thanks to Alois P. Heinz, Mar 04 2015 for noticing that the sequences were essentially identical. - N. J. A. Sloane, Mar 06 2015
Comments