cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212893 Number of quadruples (w,x,y,z) with all terms in {0,...,n} such that w-x, x-y, and y-z all have the same parity.

Original entry on oeis.org

1, 4, 25, 64, 169, 324, 625, 1024, 1681, 2500, 3721, 5184, 7225, 9604, 12769, 16384, 21025, 26244, 32761, 40000, 48841, 58564, 70225, 82944, 97969, 114244, 133225, 153664, 177241, 202500, 231361, 262144, 297025, 334084, 375769
Offset: 0

Views

Author

Clark Kimberling, May 30 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Sum of odd integers between 1 and (n+1)^2. - Réjean Labrie, Jan 14 2014

Crossrefs

Programs

  • Maple
    A212893 := n->ceil((n+1)^2/2)^2; seq(A212893(k), k=1..100); # Wesley Ivan Hurt, Jun 14 2013
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Mod[w - x, 2] == Mod[x - y, 2] == Mod[y - z, 2], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 40]]   (* this sequence *)
    Sqrt[m]  (* A000982 except for offset *)

Formula

a(n) = (A000982(n+1))^2.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
G.f.: f(x)/g(x), where f(x) = -1 - 2*x - 15*x^2 - 12*x^3 - 15*x^4 - 2*x^5 - x^6 and g(x) = ((-1+x)^5)*(1+x)^3.