A212893 Number of quadruples (w,x,y,z) with all terms in {0,...,n} such that w-x, x-y, and y-z all have the same parity.
1, 4, 25, 64, 169, 324, 625, 1024, 1681, 2500, 3721, 5184, 7225, 9604, 12769, 16384, 21025, 26244, 32761, 40000, 48841, 58564, 70225, 82944, 97969, 114244, 133225, 153664, 177241, 202500, 231361, 262144, 297025, 334084, 375769
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Maple
A212893 := n->ceil((n+1)^2/2)^2; seq(A212893(k), k=1..100); # Wesley Ivan Hurt, Jun 14 2013
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Mod[w - x, 2] == Mod[x - y, 2] == Mod[y - z, 2], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 40]] (* this sequence *) Sqrt[m] (* A000982 except for offset *)
Formula
a(n) = (A000982(n+1))^2.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
G.f.: f(x)/g(x), where f(x) = -1 - 2*x - 15*x^2 - 12*x^3 - 15*x^4 - 2*x^5 - x^6 and g(x) = ((-1+x)^5)*(1+x)^3.
Comments