cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212897 Number of (w,x,y,z) with all terms in {0,...,n} and (least gapsize)>1.

Original entry on oeis.org

0, 0, 2, 16, 74, 230, 562, 1172, 2186, 3754, 6050, 9272, 13642, 19406, 26834, 36220, 47882, 62162, 79426, 100064, 124490, 153142, 186482, 224996, 269194, 319610, 376802, 441352, 513866, 594974, 685330, 785612, 896522, 1018786
Offset: 0

Views

Author

Clark Kimberling, May 31 2012

Keywords

Comments

The gapsizes are |w-x|, |x-y|, |y-z|. Every term is even.
For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Min[Abs[w - x], Abs[x - y], Abs[y - z]] > 1, s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 40]]   (* A212897 *)
    m/2 (* integers *)

Formula

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>=7.
G.f.: (2*x^2 + 6*x^3 + 14*x^4 + 2*x^6)/(1 - 5*x + 10*x^2 - 10*x^3 + 5*x^4 - x^5).
a(n) = n^4-5*n^3+12*n^2-16*n+10 with n>1, a(0)=a(1)=0. [Bruno Berselli, Jun 12 2012]