A212900 Number of (w,x,y,z) with all terms in {0,...,n} and distinct consecutive gap sizes.
0, 4, 28, 122, 340, 786, 1558, 2814, 4690, 7404, 11130, 16140, 22652, 30992, 41416, 54310, 69968, 88830, 111234, 137674, 168526, 204344, 245542, 292728, 346360, 407100, 475444, 552114, 637644, 732810, 838190, 954614, 1082698
Offset: 0
Examples
a(1)=4 counts these (w,x,y,z): (0,0,1,1), (0,1,1,0), (1,1,0,0), (1,0,0,1).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,1,-3,-1,1,3,-1,-2,1).
Crossrefs
Cf. A211795.
Programs
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Abs[w - x] != Abs[x - y] && Abs[x - y] != Abs[y - z], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 40]] (* A212900 *) m/2 (* integers *) LinearRecurrence[{2,1,-3,-1,1,3,-1,-2,1},{0,4,28,122,340,786,1558,2814,4690},40] (* Harvey P. Dale, Aug 25 2013 *)
Formula
a(n) = 2*a(n-1)+a(n-2)-3*a(n-3)-a(n-4)+a(n-5)+3*a(n-6)-a(n-7)-2*a(n-8)+a(n-9).
G.f.: 2*x*(2 + 10*x + 31*x^2 + 40*x^3 + 36*x^4 + 18*x^5 + 7*x^6)/((1 - x)^5*(1 + x)^2*(1 + x + x^2)).
Comments