A212906 Triangle T(n,k) of orders of degree-n irreducible polynomials over GF(3) listed in ascending order.
1, 2, 4, 8, 13, 26, 5, 10, 16, 20, 40, 80, 11, 22, 121, 242, 7, 14, 28, 52, 56, 91, 104, 182, 364, 728, 1093, 2186, 32, 41, 82, 160, 164, 205, 328, 410, 656, 820, 1312, 1640, 3280, 6560, 757, 1514, 9841, 19682, 44, 61, 88, 122, 244, 484, 488, 671, 968, 1342
Offset: 1
Examples
Triangle T(n,k) begins: 1, 2; 4, 8; 13, 26; 5, 10, 16, 20, 40, 80; 11, 22, 121, 242; 7, 14, 28, 52, 56, 91, 104, 182, 364, 728;
References
- R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press, 1997, Table C, pp. 555-557.
- V. I. Arnol'd, Topology and statistics of formulas of arithmetics, Uspekhi Mat. Nauk, 58:4(352) (2003), 3-28
Links
- Alois P. Heinz, Rows n = 1..47, flattened (first 13 rows from Boris Putievskiy)
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- XIAO, Polynomial order (computes the order of an irreducible polynomial over a finite field GF(p))
Crossrefs
Programs
-
Maple
with(numtheory): M:= proc(n) option remember; divisors(3^n-1) minus U(n-1) end: U:= proc(n) option remember; `if`(n=0, {}, M(n) union U(n-1)) end: T:= n-> sort([M(n)[]])[]: seq(T(n), n=1..15); # Alois P. Heinz, Jun 02 2012
-
Mathematica
M[n_] := M[n] = Divisors[3^n - 1] ~Complement~ U[n - 1]; U[n_] := U[n] = If[n == 0, {}, M[n] ~Union~ U[n - 1]]; T[n_] := Sort[M[n]]; Array[T, 15] // Flatten (* Jean-François Alcover, Jun 10 2018, after Alois P. Heinz *)
Formula
T(n,k) = k-th smallest element of M(n) with M(n) = {d : d | (3^n-1)} \ (M(1) U M(2) U ... U M(i-1)) for n>1, M(1) = {1,2}.
|M(n)| = Sum_{d|n} mu(n/d)*tau(3^d-1) = A059885(n).
Comments