A182172
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
Columns k=0-12 give:
A000007,
A000012,
A001405,
A001006,
A005817,
A049401,
A007579,
A007578,
A007580,
A212915,
A212916,
A229053,
A229068.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
A293739
Number of multisets of nonempty words with a total of n letters over nonary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 3, 7, 20, 54, 164, 500, 1630, 5472, 19256, 70121, 265723, 1041184, 4225484, 17689505, 76392933, 339283021, 1548592471, 7246210567, 34725853445, 170096822940, 850715642495, 4337263437693, 22519434992230, 118916581795167, 638088881489144, 3475474084479428
Offset: 0
A293748
Number of sets of nonempty words with a total of n letters over nonary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 2, 6, 15, 45, 136, 430, 1415, 4845, 17234, 63497, 242720, 958754, 3916799, 16493831, 71586602, 319336319, 1463096806, 6869041635, 33014439494, 162130576595, 812715417240, 4151894763819, 21595739171153, 114222733829429, 613789962584588, 3347502798880170
Offset: 0
A229053
Number of standard Young tableaux of n cells and height <= 11.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140151, 568491, 2390311, 10347911, 46191551, 211671999, 996269310, 4801547628, 23695885170, 119481280210, 615372604033, 3232009497979, 17302866542177, 94301143232321, 522945331559246, 2947729723188352
Offset: 0
-
RecurrenceTable[{-10395 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-3 (-4+n) (-3+n) (-2+n) (-1+n) (28701+2578 n) a[-5+n]+(-3+n) (-2+n) (-1+n) (331317+74458 n+3319 n^2) a[-4+n]+2 (-2+n) (-1+n) (546120+154023 n+11843 n^2+270 n^3) a[-3+n]-(-1+n) (1857231+1090536 n+149299 n^2+7472 n^3+125 n^4) a[-2+n]+(-2755377-1658520 n-265085 n^2-17752 n^3-535 n^4-6 n^5) a[-1+n]+(10+n) (18+n) (24+n) (28+n) (30+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10,a[5]==26,a[6]==76}, a, {n, 20}]
A217321
Number of self-inverse permutations in S_n with longest increasing subsequence of length 9.
Original entry on oeis.org
1, 9, 89, 639, 4655, 30330, 198148, 1233743, 7694099, 46938514, 287070944, 1738940782, 10570927022, 64059763010, 389873574058, 2373799261605, 14522526860316, 89060416668016, 548932942208392, 3395326330414774, 21109553761623110, 131785019270029876
Offset: 9
A217322
Number of self-inverse permutations in S_n with longest increasing subsequence of length 10.
Original entry on oeis.org
1, 10, 109, 857, 6798, 48007, 338529, 2267425, 15164662, 98964444, 645978814, 4168541022, 26949303558, 173445855265, 1119737108943, 7224864497439, 46800745943134, 303692912870933, 1979556048016406, 12943419575576650, 85040314513698164, 560910092712436079
Offset: 10
A218262
Number of standard Young tableaux of n cells and height >= 10.
Original entry on oeis.org
1, 11, 121, 1001, 8086, 59228, 426673, 2946593, 20161558, 135303408, 904408398, 5995379358, 39727129830, 262629161094, 1739604051411, 11535387587595, 76763703224070, 512448824337780, 3436760740882050, 23151339236295810, 156789753069685500, 1067435349046248600
Offset: 10
A229068
Number of standard Young tableaux of n cells and height <= 12.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568503, 2390466, 10349340, 46204720, 211779200, 997134592, 4808141824, 23745792032, 119848119307, 618058083314, 3251373425356, 17442275104496, 95297400355320, 530067682582320, 2998503402985440
Offset: 0
Cf.
A182172,
A001405 (k=2),
A001006 (k=3),
A005817 (k=4),
A049401 (k=5),
A007579 (k=6),
A007578 (k=7),
A007580 (k=8),
A212915 (k=9),
A212916 (k=10),
A229053 (k=11).
-
RecurrenceTable[{-147456 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (12+n) a[-6+n]-110592 (-4+n) (-3+n) (-2+n) (-1+n) (29+2 n) a[-5+n]+256 (-3+n) (-2+n) (-1+n) (121272+32786 n+2343 n^2+49 n^3) a[-4+n]+128 (-2+n) (-1+n) (438597+90321 n+5391 n^2+98 n^3) a[-3+n]-16 (-1+n) (8718630+5347213 n+804616 n^2+49754 n^3+1372 n^4+14 n^5) a[-2+n]-8 (27335490+10162354 n+1206473 n^2+63328 n^3+1533 n^4+14 n^5) a[-1+n]+(11+n) (20+n) (27+n) (32+n) (35+n) (36+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]
Showing 1-8 of 8 results.
Comments