A182172
Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 9, 10, 10, 10, 10, 10, ...
0, 1, 10, 21, 25, 26, 26, 26, 26, ...
0, 1, 20, 51, 70, 75, 76, 76, 76, ...
0, 1, 35, 127, 196, 225, 231, 232, 232, ...
0, 1, 70, 323, 588, 715, 756, 763, 764, ...
Columns k=0-12 give:
A000007,
A000012,
A001405,
A001006,
A005817,
A049401,
A007579,
A007578,
A007580,
A212915,
A212916,
A229053,
A229068.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]];
a[n_, k_] := g[n, k, {}];
Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
A293740
Number of multisets of nonempty words with a total of n letters over denary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 3, 7, 20, 54, 164, 500, 1630, 5472, 19257, 70132, 265845, 1042187, 4233556, 17747898, 76808746, 342105748, 1567582938, 7371055703, 35543320641, 175391546006, 884988267329, 4558168670317, 23945579145172, 128119583103268, 697657759802893, 3861749505389798
Offset: 0
A293749
Number of sets of nonempty words with a total of n letters over denary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.
Original entry on oeis.org
1, 1, 2, 6, 15, 45, 136, 430, 1415, 4845, 17235, 63508, 242841, 959746, 3924747, 16551199, 71994097, 322098625, 1481655067, 6990945197, 33812067833, 167294687170, 846131720816, 4367249636291, 22985935628080, 123193976095986, 671862417595209, 3724122166971836
Offset: 0
A229053
Number of standard Young tableaux of n cells and height <= 11.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140151, 568491, 2390311, 10347911, 46191551, 211671999, 996269310, 4801547628, 23695885170, 119481280210, 615372604033, 3232009497979, 17302866542177, 94301143232321, 522945331559246, 2947729723188352
Offset: 0
-
RecurrenceTable[{-10395 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) a[-6+n]-3 (-4+n) (-3+n) (-2+n) (-1+n) (28701+2578 n) a[-5+n]+(-3+n) (-2+n) (-1+n) (331317+74458 n+3319 n^2) a[-4+n]+2 (-2+n) (-1+n) (546120+154023 n+11843 n^2+270 n^3) a[-3+n]-(-1+n) (1857231+1090536 n+149299 n^2+7472 n^3+125 n^4) a[-2+n]+(-2755377-1658520 n-265085 n^2-17752 n^3-535 n^4-6 n^5) a[-1+n]+(10+n) (18+n) (24+n) (28+n) (30+n) a[n]==0,a[1]==1,a[2]==2,a[3]==4,a[4]==10,a[5]==26,a[6]==76}, a, {n, 20}]
A217322
Number of self-inverse permutations in S_n with longest increasing subsequence of length 10.
Original entry on oeis.org
1, 10, 109, 857, 6798, 48007, 338529, 2267425, 15164662, 98964444, 645978814, 4168541022, 26949303558, 173445855265, 1119737108943, 7224864497439, 46800745943134, 303692912870933, 1979556048016406, 12943419575576650, 85040314513698164, 560910092712436079
Offset: 10
A229068
Number of standard Young tableaux of n cells and height <= 12.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568503, 2390466, 10349340, 46204720, 211779200, 997134592, 4808141824, 23745792032, 119848119307, 618058083314, 3251373425356, 17442275104496, 95297400355320, 530067682582320, 2998503402985440
Offset: 0
Cf.
A182172,
A001405 (k=2),
A001006 (k=3),
A005817 (k=4),
A049401 (k=5),
A007579 (k=6),
A007578 (k=7),
A007580 (k=8),
A212915 (k=9),
A212916 (k=10),
A229053 (k=11).
-
RecurrenceTable[{-147456 (-5+n) (-4+n) (-3+n) (-2+n) (-1+n) (12+n) a[-6+n]-110592 (-4+n) (-3+n) (-2+n) (-1+n) (29+2 n) a[-5+n]+256 (-3+n) (-2+n) (-1+n) (121272+32786 n+2343 n^2+49 n^3) a[-4+n]+128 (-2+n) (-1+n) (438597+90321 n+5391 n^2+98 n^3) a[-3+n]-16 (-1+n) (8718630+5347213 n+804616 n^2+49754 n^3+1372 n^4+14 n^5) a[-2+n]-8 (27335490+10162354 n+1206473 n^2+63328 n^3+1533 n^4+14 n^5) a[-1+n]+(11+n) (20+n) (27+n) (32+n) (35+n) (36+n) a[n]==0, a[1]==1, a[2]==2, a[3]==4, a[4]==10, a[5]==26, a[6]==76}, a, {n, 20}]
Showing 1-6 of 6 results.
Comments