cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212919 G.f. satisfies: A(x) = x^3 - x + Series_Reversion(x - x*A(x)).

Original entry on oeis.org

1, 1, 1, 1, 5, 14, 29, 73, 229, 671, 1840, 5415, 16983, 52547, 161420, 511039, 1655598, 5372395, 17527912, 58076084, 194676024, 656160449, 2227549164, 7635624954, 26380508479, 91696805060, 320866223000, 1130833326852, 4010720214072, 14306769257286
Offset: 3

Views

Author

Paul D. Hanna, May 31 2012

Keywords

Comments

Compare the g.f. to a g.f. G(x) of A088714 (offset 1), which satisfies:
G(x) = Series_Reversion(x - x*G(x)),
G(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*G(x)^n/n!, and
G(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*G(x)^n/n! ).

Examples

			G.f.: A(x) = x^3 + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 +...
The series reversion of x - x*A(x) begins:
x + x^4 + x^5 + x^6 + 5*x^7 + 14*x^8 + 29*x^9 + 73*x^10 + 229*x^11 +...
which equals x - x^3 + A(x).
The g.f. satisfies:
A(x) = x^3 + x*A(x) + d/dx x^2*A(x)^2/2! + d^2/dx^2 x^3*A(x)^3/3! + d^3/dx^3 x^4*A(x)^4/4! +...
log(1-x^2 + A(x)/x) = A(x) + d/dx x*A(x)^2/2! + d^2/dx^2 x^2*A(x)^3/3! + d^3/dx^3 x^3*A(x)^4/4! +...
Related expansions:
d/dx x^2*A(x)^2/2! = 4*x^7 + 9*x^8 + 15*x^9 + 22*x^10 + 78*x^11 + 260*x^12 +...
d^2/dx^2 x^3*A(x)^3/3! = 22*x^10 + 78*x^11 + 182*x^12 + 350*x^13 + 1080*x^14 +...
d^3/dx^3 x^4*A(x)^4/4! = 140*x^13 + 680*x^14 + 2040*x^15 + 4845*x^16 +...
d^4/dx^4 x^5*A(x)^5/5! = 969*x^16 + 5985*x^17 + 21945*x^18 + 61985*x^19 +...
...
d^(n-1)/dx^(n-1) x^n*A(x)^n/n! = A002293(n)*x^(3*n+1) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x^3); for(i=1, n, A=x^3-x+serreverse(x-x*A +x*O(x^n))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x^3); for(i=1, n, A=x^3+sum(m=1, n, Dx(m-1, x^m*A^m/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(G=F); for(i=1, n, G=deriv(G)); G}
    {a(n)=local(A=x^3); for(i=1, n, A=x^3-x+x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*A^m/m!)+x*O(x^n)))); polcoeff(A, n)}
    for(n=3, 40, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x^3 + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*A(x)^n/n!.
(2) A(x) = x^3 - x + x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*A(x)^n/n! ).