cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212965 Number of triples (w,x,y) with all terms in {0,...,n} and such that w = max(w,x,y) - min(w,x,y).

Original entry on oeis.org

1, 4, 12, 21, 37, 52, 76, 97, 129, 156, 196, 229, 277, 316, 372, 417, 481, 532, 604, 661, 741, 804, 892, 961, 1057, 1132, 1236, 1317, 1429, 1516, 1636, 1729, 1857, 1956, 2092, 2197, 2341, 2452, 2604, 2721, 2881, 3004, 3172, 3301, 3477, 3612
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w == Max[w, x, y] - Min[w, x, y], s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    Map[t[#] &, Range[0, 50]]   (* A212965 *)

Formula

a(n) = (14*n*(n+1) + (2*n+1)*(-1)^n + 7)/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: (1 + 3*x + 6*x^2 + 3*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
From Ayoub Saber Rguez, Dec 06 2021: (Start)
a(n) + A213498(n) = (n+1)^3.
a(n) = (7*n^2 + 8*n + 4 - (2*n+1)*(n mod 2))/4. (End)