cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212970 Number of (w,x,y) with all terms in {0,...,n} and w != x and x < range(w,x,y).

Original entry on oeis.org

0, 2, 8, 22, 44, 80, 128, 196, 280, 390, 520, 682, 868, 1092, 1344, 1640, 1968, 2346, 2760, 3230, 3740, 4312, 4928, 5612, 6344, 7150, 8008, 8946, 9940, 11020, 12160, 13392, 14688, 16082, 17544, 19110, 20748, 22496, 24320, 26260, 28280
Offset: 0

Views

Author

Clark Kimberling, Jun 02 2012

Keywords

Comments

For a guide to related sequences, see A212959.
Twice the partial sums of A210977. - J. M. Bergot, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w != x < (Max[w, x, y] - Min[w, x, y]),
       s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212970 *)
    m/2 (* essentially A088003 *)

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: f(x)/g(x), where f(x) = 2*x*(1 + 2*x + 2*x^2) and g(x) = ((1-x)^4)(1+x)^2.
a(n) = 2 * A088003(n) for n>0.
From Ayoub Saber Rguez, Mar 31 2023: (Start)
a(n) + A212969(n+1) = A045991(n+1).
a(n) = (10*n^3 + 24*n^2 + 8*n + (6*n)*(n mod 2))/24. (End)

Extensions

Typo in name corrected by Ayoub Saber Rguez, Mar 31 2023