A212984 Number of (w,x,y) with all terms in {0..n} and 3w = x+y.
1, 1, 3, 6, 8, 12, 17, 21, 27, 34, 40, 48, 57, 65, 75, 86, 96, 108, 121, 133, 147, 162, 176, 192, 209, 225, 243, 262, 280, 300, 321, 341, 363, 386, 408, 432, 457, 481, 507, 534, 560, 588, 617, 645, 675, 706, 736, 768, 801, 833, 867, 902, 936, 972, 1009
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Cf. A212959.
Programs
-
Magma
[1 + Floor(2*n/3) + Floor(n^2/3) : n in [0..80]]; // Wesley Ivan Hurt, Jul 25 2016
-
Maple
A212984:=n->1 + floor(2*n/3) + floor(n^2/3): seq(A212984(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
-
Mathematica
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[3 w == x + y, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; m = Map[t[#] &, Range[0, 70]] (* A212984 *)
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
G.f.: f(x)/g(x), where f(x) = 1 - x + 2*x^2 and g(x) = (1+x+x^2)*(1-x)^3.
a(n) = 1 + floor(2*n/3) + floor(n^2/3). - Wesley Ivan Hurt, Jul 25 2016
Comments