A213010 G.f. satisfies: A(x) = x+x^2 + x*A(A(x)).
1, 2, 4, 16, 80, 480, 3296, 25152, 209600, 1884160, 18110080, 184898304, 1994964736, 22654449664, 269855506944, 3362350046208, 43715434232832, 591812683833344, 8326660788725760, 121550217508892672, 1838089917983911936, 28753297176215257088, 464675647688625364992
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +... where A(A(x)) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +... Related expansions. Let B(B(x)) = A(x), then B(x) is an integer series: B(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 + 6133*x^8 +... where the coefficients of B(x) are congruent to 1 modulo 4.
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..256
Programs
-
PARI
{a(n)=local(A=x+2*x^2);for(i=1,n,A=x+x^2+x*subst(A,x,A+x*O(x^n)));polcoeff(A,n)} for(n=1,31,print1(a(n),", "))
Formula
G.f. satisfies: A(x) = x/G(x) - 1 - G(x) where A(G(x)) = x.
Comments