A213022 Expansion of phi(x)^2 * psi(x) in powers of x where phi(), psi() are Ramanujan theta functions.
1, 5, 8, 5, 8, 16, 9, 8, 16, 8, 17, 24, 8, 16, 16, 13, 24, 16, 16, 24, 32, 13, 8, 32, 8, 24, 40, 16, 25, 24, 24, 24, 32, 16, 16, 40, 17, 32, 32, 16, 40, 48, 16, 16, 32, 21, 48, 32, 16, 24, 40, 32, 24, 56, 24, 45, 40, 16, 32, 24, 32, 40, 48, 16, 32, 64, 25, 24
Offset: 0
Keywords
Examples
a(0) = 1 since the norm squared of point [0, 0, 0] with respect to [0, 0, 1/4] is 1/16 = 1/16 + 1/2*0. a(1) = 5 since the norm squared of points [-1/2, -1/2, -1/2], [-1/2, 1/2, -1/2], [0, 0, -1], [1/2, -1/2, -1/2], [1/2, 1/2, -1/2] with respect to [0, 0, 1/4] is 9/16 = 1/16 + 1/2*1. 1 + 5*x + 8*x^2 + 5*x^3 + 8*x^4 + 16*x^5 + 9*x^6 + 8*x^7 + 16*x^8 + 8*x^9 + ... q + 5*q^9 + 8*q^17 + 5*q^25 + 8*q^33 + 16*q^41 + 9*q^49 + 8*q^57 + 16*q^65 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A005875.
Programs
-
Mathematica
CoefficientList[QPochhammer[q^2]^12/(QPochhammer[q]^5*QPochhammer[q^4]^4) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^12 / (eta(x + A)^5 * eta(x^4 + A)^4), n))}
Formula
Expansion of q^(-1/8) * eta(q^2)^12 / (eta(q)^5 * eta(q^4)^4) in powers of q.
Expansion of q^(-1/16) times theta series of b.c.c. lattice with respect to point [0, 0, 1/4] in powers of q^(1/2).
Euler transform of period 4 sequence [ 5, -7, 5, -3, ...].
6 * a(n) = A005875(8*n + 1).
Comments