cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213024 The number of solutions to x^2 + y^2 + 2*z^2 = n in positive integers x,y,z.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 2, 2, 0, 2, 1, 0, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 6, 0, 0, 4, 0, 2, 4, 2, 3, 4, 2, 2, 2, 0, 6, 4, 2, 4, 0, 4, 2, 4, 2, 0, 8, 2, 2, 6, 0, 2, 8, 2, 6, 4, 0, 6, 1, 0, 4, 6, 4, 4, 6, 2, 2, 6, 2, 4, 8, 4, 0, 4, 2, 2, 10, 4, 6, 4, 2, 6, 2, 2, 8, 6, 6, 6, 0, 2, 0, 8, 6, 2, 9
Offset: 0

Views

Author

Max Alekseyev, Sep 29 2012

Keywords

Crossrefs

Programs

  • PARI
    N=166; x='x+O('x^N);
    T(x)=sum(k=1, 1+sqrtint(N), x^(k*k) );
    gf=T(x)^2 * T(x^2);
    v=Vec('a0 + gf );  v[1]=0;  v
    /* Joerg Arndt, Oct 01 2012 */

Formula

a(n) = ( A014455(n) - 2*A033715(n) - A004018(n) + A000122(n/2) + 2*A000122(n) - A000007(n) )/8.
G.f.: T(x)^2 * T(x^2) where T(x) = sum(k>=1, x^(k^2)). [Joerg Arndt, Oct 01 2012]