A213091 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^2).
1, 1, 1, 2, 4, 11, 31, 98, 317, 1070, 3685, 12928, 45924, 164552, 593398, 2148288, 7796846, 28328601, 102948125, 373955584, 1357252616, 4921292287, 17828236695, 64546901169, 233660589210, 846258569786, 3068523234989, 11147449003438, 40600425590874, 148330067463010
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 11*x^5 + 31*x^6 + 98*x^7 +... Related expansions: A(x)^2 = 1 + 2*x + 3*x^2 + 6*x^3 + 13*x^4 + 34*x^5 + 96*x^6 + 296*x^7 +... A(-x*A(x)^2) = 1 - x - x^2 - x^3 - 4*x^4 - 10*x^5 - 34*x^6 - 107*x^7 -...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
nmax = 29; sol = {a[0] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x/A[(-x) A[x]^2]) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}]; sol /. Rule -> Set; a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A,x,-x*subst(A^2,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments