A213099 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^7)^3.
1, 1, 3, 18, 112, 909, 7833, 74603, 740541, 7656219, 81187518, 878435208, 9647220024, 107137240686, 1199914011387, 13521738420240, 153051832116378, 1737562815056865, 19762347822563532, 224970273310192579, 2561375647064514444, 29149168085832027732
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 112*x^4 + 909*x^5 + 7833*x^6 +... Related expansions: A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2079*x^4 + 16611*x^5 + 142702*x^6 +... A(-x*A(x)^7)^3 = 1 - 3*x - 9*x^2 - 31*x^3 - 318*x^4 - 2586*x^5 - 25969*x^6 -...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^7]^3 + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^7,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments