A213101 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^8)^4.
1, 1, 4, 26, 188, 1627, 15172, 154904, 1670836, 18951217, 222682164, 2693625128, 33309537808, 419311915217, 5354144473084, 69169422070152, 902237854706616, 11863641066687085, 157052133090437332, 2090929291636792824, 27971914781646817864, 375725009230868446500
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 188*x^4 + 1627*x^5 + 15172*x^6 +... Related expansions: A(x)^8 = 1 + 8*x + 60*x^2 + 488*x^3 + 4150*x^4 + 37600*x^5 + 358788*x^6 +... A(-x*A(x)^8)^4 = 1 - 4*x - 10*x^2 - 44*x^3 - 439*x^4 - 3884*x^5 - 42724*x^6 -...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^8]^4 + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^4,x,-x*subst(A^8,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments