A213105 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^6.
1, 1, 6, 57, 614, 7716, 104322, 1529385, 23689968, 385885521, 6531397090, 114147452526, 2045979734964, 37435147640010, 696431496524796, 13134442980269397, 250527556214516892, 4824098879117797749, 93639919777995946446, 1830133457257882605430
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 6*x^2 + 57*x^3 + 614*x^4 + 7716*x^5 + 104322*x^6 +... Related expansions: A(x)^12 = 1 + 12*x + 138*x^2 + 1696*x^3 + 21723*x^4 + 292836*x^5 +... A(-x*A(x)^12)^6 = 1 - 6*x - 21*x^2 - 146*x^3 - 1959*x^4 - 25056*x^5 -...
Crossrefs
Programs
-
Mathematica
m = 20; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^6 + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^6,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Comments