cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213111 E.g.f.: A(x) = exp( x/A(-x*A(x)^6)^2 ).

Original entry on oeis.org

1, 1, 5, 73, 1497, 48321, 2016733, 106687113, 6745180529, 495988880833, 41495596689141, 3880618840698249, 400537444634948041, 45126092520882513921, 5501154522933362385485, 720279890636684703825481, 100658531630809161730405857, 14934726665907895887483076737
Offset: 0

Views

Author

Paul D. Hanna, Jun 05 2012

Keywords

Comments

Compare the e.g.f. to:
(1) W(x) = exp(x/W(-x*W(x)^2)^1) when W(x) = Sum_{n>=0} (1*n+1)^(n-1)*x^n/n!.
(2) W(x) = exp(x/W(-x*W(x)^4)^2) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!.
(3) W(x) = exp(x/W(-x*W(x)^6)^3) when W(x) = Sum_{n>=0} (3*n+1)^(n-1)*x^n/n!.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 73*x^3/3! + 1497*x^4/4! + 48321*x^5/5! +...
Related expansions:
A(x)^2 = 1 + 2*x + 12*x^2/2! + 176*x^3/3! + 3728*x^4/4! + 118912*x^5/5! +...
A(x)^6 = 1 + 6*x + 60*x^2/2! + 1008*x^3/3! + 23952*x^4/4! + 775296*x^5/5! +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 20*x^2/2! + 296*x^3/3! + 7824*x^4/4! +...
The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^6)^2, begins:
log(A(x)) = x + 4*x^2/2! + 60*x^3/3! + 1184*x^4/4! + 39120*x^5/5! + 1639872*x^6/6! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^2,x,-x*A^6+x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))