A213112 E.g.f.: A(x) = exp( x/A(-x*A(x)^7)^3 ).
1, 1, 7, 118, 2953, 109156, 5220649, 316358470, 23113133089, 1989812691208, 196917302640241, 22027382030604226, 2745173167377165793, 376884883299800082988, 56471832695739964146505, 9164249250078891945300886, 1600258838038369930772797249
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 2953*x^4/4! + 109156*x^5/5! +... Related expansions: A(x)^3 = 1 + 3*x + 27*x^2/2! + 486*x^3/3! + 12825*x^4/4! + 477108*x^5/5! +... A(x)^7 = 1 + 7*x + 91*x^2/2! + 1918*x^3/3! + 56329*x^4/4! + 2194612*x^5/5! +... 1/A(-x*A(x)^7)^3 = 1 + 3*x + 33*x^2/2! + 603*x^3/3! + 17913*x^4/4! +... The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^7)^3, begins: log(A(x)) = x + 6*x^2/2! + 99*x^3/3! + 2412*x^4/4! + 89565*x^5/5! +...
Programs
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^3,x,-x*A^7+x*O(x^n))));n!*polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
Comments