A213126 Rows of triangle formed using Pascal's rule, except sums in the n-th row are modulo n: T(n,0) = T(n,n) = 1 and T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod n.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 4, 1, 2, 1, 4, 1, 1, 5, 5, 3, 3, 5, 5, 1, 1, 6, 2, 0, 6, 0, 2, 6, 1, 1, 7, 8, 2, 6, 6, 2, 8, 7, 1, 1, 8, 5, 0, 8, 2, 8, 0, 5, 8, 1, 1, 9, 2, 5, 8, 10, 10, 8, 5, 2, 9, 1, 1, 10, 11, 7, 1, 6, 8, 6
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 0, 1; 1, 1, 1, 1; 1, 2, 2, 2, 1; 1, 3, 4, 4, 3, 1; 1, 4, 1, 2, 1, 4, 1; 1, 5, 5, 3, 3, 5, 5, 1; 1, 6, 2, 0, 6, 0, 2, 6, 1; 1, 7, 8, 2, 6, 6, 2, 8, 7, 1; 1, 8, 5, 0, 8, 2, 8, 0, 5, 8, 1; 1, 9, 2, 5, 8, 10, 10, 8, 5, 2, 9, 1;
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=If[k==0 || k==n, 1, Mod[T[n - 1, k - 1] + T[n- 1, k], n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Indranil Ghosh, Apr 29 2017 *)
-
Python
src = [0]*1024 dst = [0]*1024 for n in range(19): dst[0] = dst[n] = 1 for k in range(1, n): dst[k] = (src[k-1]+src[k]) % n for k in range(n+1): src[k] = dst[k] print(dst[k], end=',')
Extensions
Offset corrected by Joerg Arndt, Dec 05 2016