A213130
Polylogarithm li(-n,-1/7) multiplied by (8^(n+1))/7.
Original entry on oeis.org
1, -1, -6, -22, 120, 3464, 30864, -189232, -11564160, -173474176, 923222784, 112587838208, 2509094415360, -7947533372416, -2393798607108096, -74042111038461952, -8461127118520320, 94056121376877215744
Offset: 0
polylog(-5,-1/7)*8^6/7 = 3464.
-
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*7^k, k=0..n),n=0..17); # Peter Luschny, Apr 21 2013
-
f[n_] := PolyLog[-n, -1/7] 8^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
-
\\ in A212846; run limnpq(nmax, 1, 7)
-
a(n) = sum(k=0, n, k!*(-1)^k*8^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
A213132
Polylogarithm li(-n,-1/9) multiplied by (10^(n+1))/9.
Original entry on oeis.org
1, -1, -8, -46, 64, 7280, 118720, 406160, -35578880, -1156775680, -12796467200, 444964083200, 27457634713600, 594958346547200, -9096689344716800, -1258068242084608000, -45330583283597312000, 24150498582339584000, 95678058298287259648000, 5379182782796767182848000
Offset: 0
polylog(-5, -1/9)*10^6/9 = 7280.
-
seq(add((-1)^(n-k)*combinat[eulerian1](n,k)*9^k, k=0..n),n=0..17); # Peter Luschny, Apr 21 2013
-
Table[If[n == 0, 1, PolyLog[-n, -1/9] 10^(n+1)/9], {n, 0, 19}] (* Jean-François Alcover, Jun 27 2019 *)
-
/* See A212846; run limnpq(nmax, 1, 9) */
-
x='x+O('x^66); Vec(serlaplace( 10/(9+exp(10*x)) )) \\ Joerg Arndt, Apr 21 2013
-
a(n) = sum(k=0, n, k!*(-1)^k*10^(n-k)*stirling(n, k, 2)); \\ Seiichi Manyama, Mar 13 2022
A355373
a(n) = Sum_{k=0..n} k! * (-1)^k * n^(n-k) * Stirling2(n,k).
Original entry on oeis.org
1, -1, 0, 3, 40, 455, 2016, -177373, -11564160, -497664081, -12796467200, 536297904659, 132025634657280, 14907422733429239, 1181852660381503488, 34684559693802943875, -11771644802057621110784, -3553614228958108389522721, -656899368126170250221715456
Offset: 0
-
a[n_] := Sum[k! * (-1)^k * n^(n - k) * StirlingS2[n, k], {k, 0, n}]; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Jun 30 2022 *)
-
a(n) = sum(k=0, n, k!*(-1)^k*n^(n-k)*stirling(n, k, 2));
Showing 1-3 of 3 results.
Comments