cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213141 Polylogarithm li(-n,-3/10) multiplied by (13^(n+1))/10.

Original entry on oeis.org

1, -3, -21, 33, 4011, 46617, -1015581, -48942687, -234562629, 46778432937, 1609014050259, -27879344558607, -4096322988867669, -82334747816721543, 7943345993936306499, 587663560859820510273
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=10.

Examples

			polylog(-5,-3/10)*13^6/10 = 46617.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/10] 13^(n + 1)/10; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 10)

Formula

See formula in A212846, setting p=3,q=10.

A213143 Polylogarithm li(-n,-4/7) multiplied by (11^(n+1))/7.

Original entry on oeis.org

1, -4, -12, 188, 2580, -28324, -1123212, 4593788, 791677140, 4687508636, -789960600012, -16633684281412, 997739785828500, 46516458962719196, -1370408093916825612, -140930266128553137412
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=7.

Examples

			polylog(-5,-4/7)*11^6/7 = -28324.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -4/7] 11^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 4, 7)

Formula

See formula in A212846, setting p=4,q=7.
Showing 1-2 of 2 results.