cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213140 Polylogarithm li(-n,-3/8) multiplied by (11^(n+1))/8.

Original entry on oeis.org

1, -3, -15, 69, 2505, 10077, -716415, -14740491, 213018105, 15676762317, 98170027185, -17112616737051, -553855541534295, 15477991707447357, 1557738998240770785, 10238839745149426389, -3849999044450765494695
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=8.

Examples

			polylog(-5,-3/8)*11^6/8 = 10077.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/8] 11^(n + 1)/8; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 8)

Formula

See formula in A212846, setting p=3,q=8.

A213142 Polylogarithm li(-n,-4/5) multiplied by (9^(n+1))/5.

Original entry on oeis.org

1, -4, -4, 156, 636, -23844, -213444, 7561116, 122079996, -3999858084, -105913993284, 3121006139676, 129328349560956, -3294956189426724, -210883838041123524, 4369388083699591836, 441597580986548139516
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=5.

Examples

			polylog(-5,-4/5)*9^6/5 = -23844.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -4/5] 9^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax,4,5)

Formula

See formula in A212846, setting p=4,q=5.
Showing 1-2 of 2 results.