cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213139 Polylogarithm li(-n,-3/7) multiplied by (10^(n+1))/7.

Original entry on oeis.org

1, -3, -12, 78, 1824, 240, -513120, -5857680, 196293120, 6811964160, -57818956800, -8095402329600, -83402198630400, 10192670228889600, 371764953132748800, -11291351664942336000, -1131884186768228352000
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=7.

Examples

			polylog(-5,-3/7)*10^6/7 = 240
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/7] 10^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 7)

Formula

See formula in A212846, setting p=3,q=7.

A213141 Polylogarithm li(-n,-3/10) multiplied by (13^(n+1))/10.

Original entry on oeis.org

1, -3, -21, 33, 4011, 46617, -1015581, -48942687, -234562629, 46778432937, 1609014050259, -27879344558607, -4096322988867669, -82334747816721543, 7943345993936306499, 587663560859820510273
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=10.

Examples

			polylog(-5,-3/10)*13^6/10 = 46617.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/10] 13^(n + 1)/10; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 10)

Formula

See formula in A212846, setting p=3,q=10.
Showing 1-2 of 2 results.