cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213138 Polylogarithm li(-n,-3/5) multiplied by (8^(n+1))/5.

Original entry on oeis.org

1, -3, -6, 78, 696, -6888, -164976, 891888, 64108416, 60001152, -35965476096, -360892100352, 26498019265536, 633590774356992, -23310702740207616, -1122674884723771392, 20851651616596525056
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=5.

Examples

			polylog(-5,-3/5)*8^6/5 = -6888.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/5] 8^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 5)

Formula

See formula in A212846, setting p=3,q=5.

A213140 Polylogarithm li(-n,-3/8) multiplied by (11^(n+1))/8.

Original entry on oeis.org

1, -3, -15, 69, 2505, 10077, -716415, -14740491, 213018105, 15676762317, 98170027185, -17112616737051, -553855541534295, 15477991707447357, 1557738998240770785, 10238839745149426389, -3849999044450765494695
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=8.

Examples

			polylog(-5,-3/8)*11^6/8 = 10077.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/8] 11^(n + 1)/8; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 3, 8)

Formula

See formula in A212846, setting p=3,q=8.
Showing 1-2 of 2 results.