cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213137 Polylogarithm li(-n,-3/4) multiplied by (7^(n+1))/4.

Original entry on oeis.org

1, -3, -3, 69, 285, -6123, -56883, 1103109, 19251645, -320851083, -9828858963, 130009042149, 7019067151005, -62927791491243, -6646083378845043, 24719268064533189, 8013257547754474365, 22024516916447897397
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=4.

Examples

			polylog(-5,-3/4)*7^6/4 = -6123.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/4] 7^(n + 1)/4; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 4)

Formula

See formula in A212846, setting p=3,q=4.

A213139 Polylogarithm li(-n,-3/7) multiplied by (10^(n+1))/7.

Original entry on oeis.org

1, -3, -12, 78, 1824, 240, -513120, -5857680, 196293120, 6811964160, -57818956800, -8095402329600, -83402198630400, 10192670228889600, 371764953132748800, -11291351664942336000, -1131884186768228352000
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=7.

Examples

			polylog(-5,-3/7)*10^6/7 = 240
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -3/7] 10^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    in A212846; run limnpq(nmax, 3, 7)

Formula

See formula in A212846, setting p=3,q=7.
Showing 1-2 of 2 results.