cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213143 Polylogarithm li(-n,-4/7) multiplied by (11^(n+1))/7.

Original entry on oeis.org

1, -4, -12, 188, 2580, -28324, -1123212, 4593788, 791677140, 4687508636, -789960600012, -16633684281412, 997739785828500, 46516458962719196, -1370408093916825612, -140930266128553137412
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=7.

Examples

			polylog(-5,-4/7)*11^6/7 = -28324.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := PolyLog[-n, -4/7] 11^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 4, 7)

Formula

See formula in A212846, setting p=4,q=7.

A213145 Polylogarithm li(-n,-5/6) multiplied by (11^(n+1))/6.

Original entry on oeis.org

1, -5, -5, 295, 1195, -68705, -604205, 33497095, 521891995, -27561957905, -685542701405, 33989796735895, 1270896506674795, -58096477696175105, -3155667333487086605, 129898710835267046695
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=6.

Examples

			polylog(-5,-5/6)*11^6/6 = -68705.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 6; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 6)

Formula

See formula in A212846, setting p=5,q=6.
Showing 1-2 of 2 results.